This can help with verifying that the crate is correctly handling conditional compilation for different target platforms or features. It ensures that the cfg settings are consistent between what is intended and what is used, helping to catch potential bugs or errors early in the development process.This can help with verifying that the crate is correctly handling conditional compilation for different target platforms or features. It ensures that the cfg settings are consistent between what is intended and what is used, helping to catch potential bugs or errors early in the development process.

The Automatic Checking of cfgs: How It Works

The Cargo and Compiler team are delighted to announce that starting with Rust 1.80 (or nightly-2024-05-05) every reachable #[cfg] will be automatically checked that they match the expected config names and values.

\ This can help with verifying that the crate is correctly handling conditional compilation for different target platforms or features. It ensures that the cfg settings are consistent between what is intended and what is used, helping to catch potential bugs or errors early in the development process.

\ This addresses a common pitfall for new and advanced users.

\ This is another step to our commitment to provide user-focused tooling and we are eager and excited to finally see it fixed, after more than two years since the original RFC 30131.

A look at the feature

Every time a Cargo feature is declared that feature is transformed into a config that is passed to rustc (the Rust compiler) so it can verify with it along with well known cfgs if any of the #[cfg], #![cfg_attr] and cfg! have unexpected configs and report a warning with the unexpected_cfgs lint.

Cargo.toml:

[package] name = "foo" [features] lasers = [] zapping = []

\ src/lib.rs:

#[cfg(feature = "lasers")] // This condition is expected // as "lasers" is an expected value // of the `feature` cfg fn shoot_lasers() {} #[cfg(feature = "monkeys")] // This condition is UNEXPECTED // as "monkeys" is NOT an expected // value of the `feature` cfg fn write_shakespeare() {} #[cfg(windosw)] // This condition is UNEXPECTED // it's supposed to be `windows` fn win() {}

\ cargo check:

Expecting custom cfgs

UPDATE: This section was added with the release of nightly-2024-05-19.

\ Some crates might use custom cfgs, like loom, fuzzing or tokio_unstable that they expected from the environment (RUSTFLAGS or other means) and which are always statically known at compile time. For those cases, Cargo provides via the [lints] table a way to statically declare those cfgs as expected.

\ Defining those custom cfgs as expected is done through the special check-cfg config under [lints.rust.unexpected_cfgs]:

Cargo.toml

[lints.rust] unexpected_cfgs = { level = "warn", check-cfg = ['cfg(loom)', 'cfg(fuzzing)'] }

Custom cfgs in build scripts

On the other hand some crates use custom cfgs that are enabled by some logic in the crate build.rs. For those crates Cargo provides a new instruction: cargo::rustc-check-cfg2 (or cargo:rustc-check-cfg for older Cargo version).

\ The syntax to use is described in the rustc book section checking configuration, but in a nutshell the basic syntax of --check-cfg is:

cfg(name, values("value1", "value2", ..., "valueN"))

\ Note that every custom cfgs must always be expected, regardless if the cfg is active or not!

build.rs example

build.rs:

fn main() { println!("cargo::rustc-check-cfg=cfg(has_foo)"); // ^^^^^^^^^^^^^^^^^^^^^^ new with Cargo 1.80 if has_foo() { println!("cargo::rustc-cfg=has_foo"); } }

Equivalence table

\ More details can be found in the rustc book.

Frequently asked questions

Can it be disabled?

For Cargo users, the feature is always on and cannot be disabled, but like any other lints it can be controlled: #![warn(unexpected_cfgs)].

Does the lint affect dependencies?

No, like most lints, unexpected_cfgs will only be reported for local packages thanks to cap-lints.

How does it interact with the RUSTFLAGS env?

You should be able to use the RUSTFLAGS environment variable like it was before. Currently --cfg arguments are not checked, only usage in code are.

\ This means that doing RUSTFLAGS="--cfg tokio_unstable" cargo check will not report any warnings, unless tokio_unstable is used within your local crates, in which case crate author will need to make sure that that custom cfg is expected with cargo::rustc-check-cfg in the build.rs of that crate.

How to expect custom cfgs without a build.rs?

UPDATE: Cargo with nightly-2024-05-19 now provides the [lints.rust.unexpected_cfgs.check-cfg] config to address the statically known custom cfgs.

\ There is currently no way to expect a custom cfg other than with cargo::rustc-check-cfg in a build.rs.

\ Crate authors that don't want to use a build.rs and cannot use [lints.rust.unexpected_cfgs.check-cfg], are encouraged to use Cargo features instead.

How does it interact with other build systems?

Non-Cargo based build systems are not affected by the lint by default. Build system authors that wish to have the same functionality should look at the rustc documentation for the --check-cfg flag for a detailed explanation of how to achieve the same functionality.

\

  1. The stabilized implementation and RFC 3013 diverge significantly, in particular there is only one form for --check-cfg: cfg() (instead of values() and names() being incomplete and subtlety incompatible with each other). ↩
  2. cargo::rustc-check-cfg will start working in Rust 1.80 (or nightly-2024-05-05). From Rust 1.77 to Rust 1.79 (inclusive) it is silently ignored. In Rust 1.76 and below a warning is emitted when used without the unstable Cargo flag -Zcheck-cfg. ↩

Urgau on behalf of The Cargo Team

\ Also published here

Piyasa Fırsatı
Centrifuge Logosu
Centrifuge Fiyatı(CFG)
$0.1339
$0.1339$0.1339
-4.62%
USD
Centrifuge (CFG) Canlı Fiyat Grafiği
Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen [email protected] ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

Optum Golf Channel Games Debut In Prime Time

Optum Golf Channel Games Debut In Prime Time

The post Optum Golf Channel Games Debut In Prime Time appeared on BitcoinEthereumNews.com. FARMINGDALE, NEW YORK – SEPTEMBER 28: (L-R) Scottie Scheffler of Team
Paylaş
BitcoinEthereumNews2025/12/18 07:21
Google's AP2 protocol has been released. Does encrypted AI still have a chance?

Google's AP2 protocol has been released. Does encrypted AI still have a chance?

Following the MCP and A2A protocols, the AI Agent market has seen another blockbuster arrival: the Agent Payments Protocol (AP2), developed by Google. This will clearly further enhance AI Agents' autonomous multi-tasking capabilities, but the unfortunate reality is that it has little to do with web3AI. Let's take a closer look: What problem does AP2 solve? Simply put, the MCP protocol is like a universal hook, enabling AI agents to connect to various external tools and data sources; A2A is a team collaboration communication protocol that allows multiple AI agents to cooperate with each other to complete complex tasks; AP2 completes the last piece of the puzzle - payment capability. In other words, MCP opens up connectivity, A2A promotes collaboration efficiency, and AP2 achieves value exchange. The arrival of AP2 truly injects "soul" into the autonomous collaboration and task execution of Multi-Agents. Imagine AI Agents connecting Qunar, Meituan, and Didi to complete the booking of flights, hotels, and car rentals, but then getting stuck at the point of "self-payment." What's the point of all that multitasking? So, remember this: AP2 is an extension of MCP+A2A, solving the last mile problem of AI Agent automated execution. What are the technical highlights of AP2? The core innovation of AP2 is the Mandates mechanism, which is divided into real-time authorization mode and delegated authorization mode. Real-time authorization is easy to understand. The AI Agent finds the product and shows it to you. The operation can only be performed after the user signs. Delegated authorization requires the user to set rules in advance, such as only buying the iPhone 17 when the price drops to 5,000. The AI Agent monitors the trigger conditions and executes automatically. The implementation logic is cryptographically signed using Verifiable Credentials (VCs). Users can set complex commission conditions, including price ranges, time limits, and payment method priorities, forming a tamper-proof digital contract. Once signed, the AI Agent executes according to the conditions, with VCs ensuring auditability and security at every step. Of particular note is the "A2A x402" extension, a technical component developed by Google specifically for crypto payments, developed in collaboration with Coinbase and the Ethereum Foundation. This extension enables AI Agents to seamlessly process stablecoins, ETH, and other blockchain assets, supporting native payment scenarios within the Web3 ecosystem. What kind of imagination space can AP2 bring? After analyzing the technical principles, do you think that's it? Yes, in fact, the AP2 is boring when it is disassembled alone. Its real charm lies in connecting and opening up the "MCP+A2A+AP2" technology stack, completely opening up the complete link of AI Agent's autonomous analysis+execution+payment. From now on, AI Agents can open up many application scenarios. For example, AI Agents for stock investment and financial management can help us monitor the market 24/7 and conduct independent transactions. Enterprise procurement AI Agents can automatically replenish and renew without human intervention. AP2's complementary payment capabilities will further expand the penetration of the Agent-to-Agent economy into more scenarios. Google obviously understands that after the technical framework is established, the ecological implementation must be relied upon, so it has brought in more than 60 partners to develop it, almost covering the entire payment and business ecosystem. Interestingly, it also involves major Crypto players such as Ethereum, Coinbase, MetaMask, and Sui. Combined with the current trend of currency and stock integration, the imagination space has been doubled. Is web3 AI really dead? Not entirely. Google's AP2 looks complete, but it only achieves technical compatibility with Crypto payments. It can only be regarded as an extension of the traditional authorization framework and belongs to the category of automated execution. There is a "paradigm" difference between it and the autonomous asset management pursued by pure Crypto native solutions. The Crypto-native solutions under exploration are taking the "decentralized custody + on-chain verification" route, including AI Agent autonomous asset management, AI Agent autonomous transactions (DeFAI), AI Agent digital identity and on-chain reputation system (ERC-8004...), AI Agent on-chain governance DAO framework, AI Agent NPC and digital avatars, and many other interesting and fun directions. Ultimately, once users get used to AI Agent payments in traditional fields, their acceptance of AI Agents autonomously owning digital assets will also increase. And for those scenarios that AP2 cannot reach, such as anonymous transactions, censorship-resistant payments, and decentralized asset management, there will always be a time for crypto-native solutions to show their strength? The two are more likely to be complementary rather than competitive, but to be honest, the key technological advancements behind AI Agents currently all come from web2AI, and web3AI still needs to keep up the good work!
Paylaş
PANews2025/09/18 07:00
Read Trend And Momentum Across Markets

Read Trend And Momentum Across Markets

The post Read Trend And Momentum Across Markets appeared on BitcoinEthereumNews.com. Widely used in technical analysis, the MACD indicator helps traders read trend
Paylaş
BitcoinEthereumNews2025/12/18 07:14