The experimental section details the evaluation of the O3D-SIM representation and its integration with ChatGPT for Vision-Language Navigation (VLN).The experimental section details the evaluation of the O3D-SIM representation and its integration with ChatGPT for Vision-Language Navigation (VLN).

Evaluating Novel 3D Semantic Instance Map for Vision-Language Navigation

Abstract and 1 Introduction

  1. Related Works

    2.1. Vision-and-Language Navigation

    2.2. Semantic Scene Understanding and Instance Segmentation

    2.3. 3D Scene Reconstruction

  2. Methodology

    3.1. Data Collection

    3.2. Open-set Semantic Information from Images

    3.3. Creating the Open-set 3D Representation

    3.4. Language-Guided Navigation

  3. Experiments

    4.1. Quantitative Evaluation

    4.2. Qualitative Results

  4. Conclusion and Future Work, Disclosure statement, and References

4. Experiments

Having introduced the O3D-SIM creation pipeline and its integration with ChatGPT for natural language understanding and Vision-Language Navigation (VLN) enhancement, we now turn to the evaluation of this novel representation both quantitatively and qualitatively. This will also shed light on the impact of the O3D-SIM representation on an agent’s ability to execute queries that mimic human interaction. The evaluation is structured into two subsections: Section 4.1 focuses on the quantitative assessment of O3D-SIM, and Section 4.2 addresses the qualitative analysis of the representation.

\ Figure 4. This figure shows the difference in output from ChatGPT due to the difference in nature of the two mapping approaches, where SI-Maps is closed-set, and O3D-SIM is open-set. For queries specifying exact object classes, both approaches output the same code. But, for queries specified in an open-set manner, the newer approach describes the goal to the code, whereas the older approach maps the description to the pre-known classes and passes this class to the code. The older approach benefits from LLM’s understanding, whereas the newer approach benefits from the open-set embeddings (CLIP)

\

:::info Authors:

(1) Laksh Nanwani, International Institute of Information Technology, Hyderabad, India; this author contributed equally to this work;

(2) Kumaraditya Gupta, International Institute of Information Technology, Hyderabad, India;

(3) Aditya Mathur, International Institute of Information Technology, Hyderabad, India; this author contributed equally to this work;

(4) Swayam Agrawal, International Institute of Information Technology, Hyderabad, India;

(5) A.H. Abdul Hafez, Hasan Kalyoncu University, Sahinbey, Gaziantep, Turkey;

(6) K. Madhava Krishna, International Institute of Information Technology, Hyderabad, India.

:::


:::info This paper is available on arxiv under CC by-SA 4.0 Deed (Attribution-Sharealike 4.0 International) license.

:::

\

Piyasa Fırsatı
MapNode Logosu
MapNode Fiyatı(MAP)
$0.04498
$0.04498$0.04498
+0.13%
USD
MapNode (MAP) Canlı Fiyat Grafiği
Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen [email protected] ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.